ONE WORLD LITHUM

SALAR DEL DIABLO

A Compelling Lithium-in-Brine Opportunity, Mexico

INTRODUCTION

One World Lithium Inc. (OWL) is a lithium exploration company that is a compelling investment opportunity with its Salar del Diablo lithium property:

- The Salar del Diablo is a 75,000 hectare lithium property (290 square miles) with the potential for significant production;
- Surface samples taken from the Property over 70 miles have assayed significant lithium grades with the average grade higher than either Silver Peak Mine (Clayton Valley) or Salar de Atacama;
- Previous geophysics confirms an aquifer containing brines at a shallow depths and open ended in all directions inlcuding depth;
- OWL to drill test priority targets during March 2018 and to complete a pre feasibility study by July 2018;
- The Company has an option to acquire 90% of the property;
- John Hiner, geologist, staked he Salar del Diablo and is the operator of the exploration programs. He has
 participated in 8 discoveries of which 5 are in production and has been successfully exploring for lithium
 prospects since 2009;
- OWL also has an option to purchase a 100% property interest in the Mogollon, a high-grade silver and gold development property with the potential to produce over 100 million ounces silver and one million ounces gold; and
- OWL may inter list on the OTC QX board and the Frankfurt Exchange

CSE: OWLI

Salar del Diablo LOCATION

Salar del Diablo LAND POSITION

75,410 hectares 291 sq. miles

Salar del Diablo SUMMARY

- Strategically located in Baja California
- Large closed basin within a 75,410 hectare salar
- Strong similarities to Salar de Atacama which produces 30% of world supply from 27% of world reserves
- No environmental or permitting impediments for development and production
- Mining friendly jurisdiction
- Exploration program to include 500 surface samples starting in late January 2018, a Time Domain EM geophysical survey in February 2018 before drill testing priority target in March 2018 with a 13,000 ft. (4,000 meters) 15 hole reverse circulation program

Salar del Diablo GEOLOGY

The five geological conditions that are a MUST for the presence of lithium in brine are all present at the Salar del Diablo:

- 1. a closed basin;
- 2. presence of hot springs;
- 3. lithium source from rhyolitic tuffs;
- 4. active faults to allow transport of lithium to the salar as well as to form traps to concentrate lithium in brine; and
- 5. within a region of high heat flow.

Salar del Diablo LOCATION, LOGISTICS & CLIMATE

- Eastern Baja California Norte 80 miles (128km) south of U.S. border
- Access to the U.S. via paved highways and 25 miles from a sea port to reach world markets including Asia
- a regional power line crossing the property
- Support facilities available in San Felipe, 35 km east, with existing infrastructure to support exploration, development and production;

• Annual rainfall is less than two inches in a hot and arid climate

Salar del Diablo GEOCHEMISTRY

- Reconnaissance sampling has confirmed the presence of lithium and potassium in every sample taken over 70 miles
- Lithium and potassium found in salar evaporites in northern Salar del Diablo with samples assayed from 30 parts per million (ppm) up to 188 ppm Lithium & 1.97% Potassium
- Anomalous lithium and potassium detected in rhyolite tuffs in southern part of Salar del Diablo with samples assayed from 15 ppm up to 82 ppm Lithium and Potassium at 1.97%
- Surface samples were taken from surface salts and sediments and not from lithium in brine. These samples have a higher average grade (74 ppm) than the surface samples from the Silver Peak Mine, Clayton Valley which have an average grade of 61 ppm. Also, the surface samples grade higher than samples from Salar de Atacama.

Lithium Salar Cross Section

Rock and Sediment Analysis

GPS Mark		WEI-21	ME-MS41L	ME-MS41L	ME-MS41L	ME-MS41L	ME-MS41L
	SAMPLE	Recvd Wt.	In	К	La	Li	Mg
	DESCRIPTION	kg	ppm	%	ppm	ppm	%
203	1029153	0.66	0.014	0.44	3.86	24.1	4.15
204	1029154	1.07	0.017	0.81	6.2	35.2	2.32
205	1029155	1.51	0.017	0.81	8.35	28.4	1.24
206	1029156	2.58	0.035	1.37	10.05	82.0	2.02
207	1029157	3.52	0.024	0.81	7.28	35.1	0.96
207	1029158	4.84	0.025	0.7	8.68	31.1	0.84
210	1029160	1.77	0.036	0.08	46.4	5.0	0.25
211	1029161	2.03	0.012	0.32	8.98	15.2	0.53
213	1029162	2.59	<0.005	0.07	3.38	4.7	0.37
213	1029163	1.61	0.021	0.42	10.4	19.4	0.8
214	1029164	1.69	0.035	1	16.9	53.3	1.11
215	1029165	2.14	0.051	1.31	24	66.8	1.4
216	1029166	1.62	0.023	0.66	12.65	69.2	0.8
217	1029167	2.27	0.015	0.52	10.5	33.9	0.54
218	1029168	2.1	0.049	1.58	19.85	132.5	1.64
219	1029169	2.71	0.052	1.57	22.6	103.5	1.7
220	1029170	2.01	0.046	1.41	22.9	91.2	1.49
220	1029171	0.75	0.028	1	17.7	66.3	1.09
221	1029172	2.36	0.044	1.4	21.5	92.0	1.47
222	1029173	2.14	0.051	1.45	24.4	95.8	1.56
223	1029174	1.61	0.043	1.43	19.9	90.9	1.59
224	1029175	2.43	0.057	1.97	23.2	188.5	2.26
225	1029176	2.04	0.042	1.41	20.7	159.5	2.38
225	1029177	0.78	0.029	0.92	12.65	84.3	1.36
226	1029178	3.33	0.018	0.4	9.44	50.8	0.64
227	1029179	0.53	0.019	0.52	11.7	30.8	0.64
228	1029180	0.98	0.013	0.27	8.51	21.8	0.34

SIZE COMPARISON: Salar del Diablo to Salar de Atacama

Salar del Diablo WHY BRINES?

- Low operating costs significant cost advantage over clay or hard rock lithium production
- Brine opex \$2,200 / ton (t) lithium carbonate (LCE)
- Clay opex \$4,500 / t LCE
- Hard rock (spodumene or pegmatite) \$3,500/t LCE
- Low capex cost for a pilot plant estimated less that \$ 7,000,000
- New brine technologies improve recovery, production time, product quality
- Environmentally superior to hard rock mining with low carbon foot print

www.oneworldlithium.com

For additional information contact: info@oneworldlithium.com

1-855-554-5065